6.2 Electrical Fields

Mark scheme - Electrical Fields

Questio n		Answer/Indicative content	Mar ks	Guidance
1		B	1	
		Total	1	
2		A	1	
		Total	1	
3	a	Correct pattern Correct direction of the field	B1	Note: At least five field lines must be drawn and of these, two must be perpendicular (by eye) to the surface of the sphere and plate Note: This may be shown on just one line Examiner's Comment Most candidates drew decent field patterns and showed the correct direction of the electric field. It is difficult to draw curved field lines, but those who were careful and had the field lines perpendicular at both the surface of the sphere and the metal plate were rewarded.
	b	(Electric potential) is the work done per (unit) charge in bringing a positive charge from infinity (to the point).	B1	Allow: work done / energy required to bring a unit positive charge from infinity (to the point) Examiner's Comment This was not well-answered; the modal mark was zero. Definition for electric potential lacked precision and often made no reference to a 'unit positive charge' or 'per unit positive charge'. At times, other quantities such as electric field strength and gravitational field strength were being defined. This was a missed opportunity -definitions just need to be learnt.
	c	$\begin{aligned} & V=Q / 4 \pi \varepsilon o r \quad \begin{array}{l} \text { (Allow any } \\ \text { subject }) \end{array} \\ & Q=4 \pi \times 8.85 \times 10^{-12} \times 0.015 \times 5000 \\ & Q=8.3(4) \times 10^{-9}(\mathrm{C}) \end{aligned}$	C1	Note using $E=V / d$ with $E=\Omega / 4 \pi \varepsilon_{0} r^{2}$ is wrong physics and hence scores zero Note if the value of ε_{0} is not given here, it could be implied in the correct 3sf answer Allow any subject here if the answer is given to more than 2 sf Allow the use of $1 / 4 \pi \varepsilon_{0}=9 \times 10^{9}$ Examiner's Comment By contrast to the last question, the answers here were perfect. Correct values were substituted into the equation for electric potential to show that the charge was that stated in the question. In a 'show' question, always give the final answer to more significant figures than the required answer. It was good to see many scripts with the final answer written as $8.34 \times 10^{-9} \mathrm{C} \text {. }$

6.2 Electrical Fields

	ii	1 (electric force $=$) $1.7 \times 10^{-2} \times \tan 4.0$ (Allow any subject) (electric force $\left.=1.19 \times 10^{-3} \mathrm{~N}\right) 2$ $\begin{aligned} & E=1.2 \times 10^{-3} / 8.3(4) \times 10^{-9} \\ & E=1.4 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right) \end{aligned}$	M1 (A0) C1 A1	Not $1.7 \times 10^{-2} \sin 4$ or $1.7 \times 10^{-2} \cos 86$ Allow $1.7 \times 10^{-2} \times \sin 4 / \cos 4$ Allow 2 marks for $1.45 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$, 8.3×10^{-9} used Allow 2 marks for $1.43 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$, $1.19 \times 10^{-3}(\mathrm{~N})$ used Examiner's Comment This was a good discriminator with high-scoring candidates either using triangle of forces, or resolution of forces, to determine the electric force on the sphere. The value of the force was given so that it could be used to answer the next question. More than half of the candidates correctly calculated the electric field strength using the information provided in (c)(i) and (c)(ii)1. Some candidates used the elementary charge rather than the value from (c)(i) to calculate the field strength; this gave an incorrect answer of $7.5 \times 10^{15} \mathrm{~N} \mathrm{C}^{-1}$.
		Total	8	
4		B	1	
		Total	1	
5		A	1	
		Total	1	
6		B	1	
		Total	1	
7		D	1	
		Total	1	
8		B	1	Examiner's Comments This question required knowledge of the equation $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$, which is in the Data, Formulae and Relationship Booklet. The key, the correct answer, is \mathbf{B}. The most common mistake made by candidates was not squaring r, or the equivalent where the electric potential V equation was used instead. This gave the incorrect answer of $7.3 \times 10^{-10} \mathrm{C}$ for the most recurrent distractor \mathbf{C}. The exemplar 2 below shows a plausible method for getting to the correct answer. Exemplar 2

6.2 Electrical Fields

6.2 Electrical Fields

				downwards, but many did not take the care needed for it to be clear that the deflection at the end of the plate should be the same. Some candidates drew an ' x ' on their sketch, which was helpful in determining if the intention to draw it the same had been made.
		Total	2	
1	a	$\begin{aligned} & \varepsilon=7.2 \times 10^{-12} \times 1.2 \times 10^{-3} / 4.0 \times 10^{-4} \\ & \text { permittivity }=2.2 \times 10^{-11}\left(\mathrm{~F} \mathrm{~m}^{-1}\right) \end{aligned}$	C1	Allow any subject Allow ε_{o} instead of ε Note answer to 3 sf is $2.16 \times 10^{-11}\left(\mathrm{~F} \mathrm{~m}^{-1}\right)$ Allow 1 mark for bald 2.4; relative permittivity calculated Examiner's Comment Most candidates effortlessly used the equation $C=\varepsilon A / d$ to determine the permittivity s of the insulator between the capacitor plates. Once again, most answers were wellstructured and showed good calculator skills. The most common errors were: - Taking the prefix pico (p) to be a factor of 10^{-9}. - Confusing permittivity ε and permittivity of free space ε. - Calculating relative permittivity (2.4).
	b i	capacitance of two capacitors in series $=500$ (mF) $C=1000+500$ $C=1500(\mu \mathrm{~F})$	C1 A1	Examiner's Comment The modal score here was two marks, with most scripts showing excellent understanding of capacitors in combination. Many candidates arrived at the final answer of $1500 \mu \mathrm{~F}$ without much calculation. A small number incorrect swapped the equations for series and parallel combinations and arrived at the incorrect answer of $670 \mu \mathrm{~F}$.
	ii	$\begin{aligned} & V=1.5 \times \mathrm{e}^{-12 / 15} \\ & V=0.67(\mathrm{~V}) \end{aligned}$	C1 A1	Possible ecf from (i) Allow 1 mark for $0.83 \mathrm{~V}, \mathrm{~V}=1.5\left[1-\mathrm{e}^{-12 / 15}\right]$ used Examiner's Comment Many candidates correctly calculated the time constant of the circuit and then either determined the p.d. across the capacitors $(0.83 \mathrm{~V})$ or the resistor (0.67 V) - the latter being the correct answer. The most common mistake was calculating e^{-} 12115 rather than $1.5 \times \mathrm{e}^{-12 / 15}$. Weaker candidates got nowhere by attempting to use $V=I R$ and $Q=V C$.
		Total	6	

6.2 Electrical Fields

6.2 Electrical Fields

6.2 Electrical Fields

				$\begin{array}{c}\text { Using an incorrect equation with the distance squared } \\ \text { Not correctly converting the kinetic energy } 0.52 \mathrm{MeV} \\ \text { into joule (} \mathrm{J})\end{array}$
Using the equation $r=r_{0} \mathrm{~A}^{1 / 3}$ for the mean radius of a				
nucleus to determine the minimum distance				

6.2 Electrical Fields

				 AfL Do not use the word 'gravity' in place of 'weight'
		$\begin{aligned} & W x=F I \\ & 0.03 x \\ & =4.5 \times 10^{-4} \times 120 \text { or }=4.5 \times 10^{-4} \times 1.2 \\ & x=1.8 \mathrm{~cm} \text { or } x=0.018 \mathrm{~m} \end{aligned}$	M1 M1 A0	Allow any valid alternative approach e.g. M1 deflection angle $\theta=1^{\circ}$ $\mathrm{M} 1 \mathrm{x}=120 \sin \theta$ 1 mark for each side of the equation Examiner's Comments Although most candidates knew the principle of moments, many were unable to apply it correctly in this situation. More practice at this sort of question is recommended.
	b	Electric force/field (strength) increases Ball deflected further from vertical / moves to the right / touches negative plate Ball acquires the charge of the (negative) plate when it touches (Oscillates because) constantly repelled from (oppositely) charged plate	B1 B1 B1 B1 B1	Must be clear which force is increasing Must have the idea of a repeating cycle Examiner's Comments The purpose of this question was to challenge the candidates to use their knowledge of electric fields in a novel practical situation. The word 'oscillate' confused many candidates, who tried to explain why the ball would perform simple harmonic motion.
	c	$\begin{aligned} & I=Q f \quad \text { or } \quad Q=I t \\ & f=3.2 \times 10^{-8} / 9.0 \times 10^{-9}=3.6(\mathrm{~Hz}) \end{aligned}$	C1 A1	
		Total	12	
		$\begin{aligned} & Q=79 \mathrm{e} \text { and } q=2 \mathrm{e} \\ & F=\left(1 / 4 \pi \varepsilon_{0}\right) Q q / r^{2} \\ & =79 \times 2 \times\left(1.6 \times 10^{-19}\right)^{2} /\left[4 \pi \times 8.85 \times 10^{-12}\right. \\ & \left.\times\left(6.8 \times 10^{-14}\right)^{2}\right] \\ & =7.9(\mathrm{~N}) \end{aligned}$	C1 C1 C1 C1 A1	Apply ECF for wrong charge(s), e.g. Q and $/$ or $q=e$, or $Q=$ 79 and / or $q=2$, etc Examiner's Comments The most common error here was to use incorrect values for the charges on the two ions. Even so, most candidates were able to gain most of the marks with ECF.

6.2 Electrical Fields

		Total	4	
2 5		The force is right angles to the motion / velocity. The particle describes a circle in the plane of the paper.	B1 B1	
		Particle experiences a force perpendicular to motion / velocity. It moves to the right and either comes out or goes into the plane of the paper (in a parabolic path).	B1 B1	
		Total	4	
$\begin{aligned} & 2 \\ & 6 \end{aligned}$	a	$Q d=$ constant At least two pairs of values substituted to show that $Q d=$ constant	C1	Allow straight-line graph of Q against $1 / d$ passes through the origin Allow as d increases by a given factor (e.g. doubles) then Q decreases by the same factor (e.g. halves) Allow numbers that show when d doubles then Q halves Ignore prefixes and POT errors Examiner's Comments The question was not carefully examined by most candidates, because the reference to use Fig. $\mathbf{2 2 . 2}$ was totally ignored. A significant number of candidates focused either on superfluous practical details or the proof of the relationship between Q and d - which was required in the next question. About a third of the candidates used at least two points on the graph to show that $Q d=$ constant. The powers of ten were overlooked by examiners. A small number of candidates, mainly at the lowerend, calculated the gradient of the curve at arbitrary points to provide support for their incorrect reasoning.
		$Q=V C \text { and } C=\frac{\varepsilon_{0} A}{d}$ Hence $Q=\frac{V \varepsilon_{0} A}{d}\left(\right.$ and $Q \propto \frac{1}{d}$)	C1 A1	Allow ε Note Q, or Q / V must be the subject here $\text { Allow } Q \infty C \text { and } C \infty \quad \frac{1}{d}$ Examiner's Comments Most candidates successfully, and elegantly, provided the proof for the relationship. Correct answers ranged from the whole space filled with algebra to a couple of succinct lines. A small number of candidates finished off their working by writing $\quad Q=\frac{1}{d} \quad$ instead $\quad Q \propto \frac{1}{d} \quad$ the 'equal' and the 'proportionality' symbols are not equivalent.
	b	$1.8 \times 10^{-14}(\mathrm{~N})$	B1	Ignore sign Examiner's Comments

6.2 Electrical Fields

6.2 Electrical Fields

6.2 Electrical Fields

	ii	$\begin{aligned} & (t=) \frac{0.12}{6.0 \times 10^{7}} \\ & \left(t=2.0 \times 10^{-9} \mathrm{~s}\right) \end{aligned}$	M1 A0	Examiner's Comments As with the previous question, there is the need to make sure that the calculation leading to the given answer is clearly set out.
		$\begin{aligned} & (x=)^{1 / 2} \times 8.78 \times 10^{15} \times\left(2.0 \times 10^{-9}\right)^{2} \\ & x=1.8 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow $a=8.8 \times 10^{15}$ Examiner's Comments Most candidates appreciated the need to use an equation of motion in their solution, but a significant number of candidates used an initial horizontal velocity in the expression, leading to an incorrect answer. There were also an unusually large number who gave no response. Candidates should appreciate that if they have been given show questions, then it is likely that these values will be used in alter questions. Misconception Many candidates included an initial vertical velocity - it may be helpful to think of this process as analogous to that of projectile motion.
		Total	6	
		Level 3 (5-6 marks) Clear description and correct value of C There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear description and some correct working OR Some description and correct value for C There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Some description OR Some working There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	$\begin{gathered} \text { B1 } \times \\ 6 \end{gathered}$	Indicative scientific points may include: Description - $C=\varepsilon A / d$ - $A=$ area (of overlap) and $d=$ separation. - Use ruler to measure the side / radius / diameter (andhence the area A) - Ensure total overlap of plates. - Measure the thickness / d of paper using micrometer /(vernier) caliper. - Take several readings of thickness and determine anaverage value for d Calculation of capacitance - gradient ≈ 85 - $\quad C \approx 1.2 \times 10^{-8}(F)$ Examiner's Comments This was the second of the two LoR questions in this paper. It required application of practical skills from module 1.1

而

				$\begin{aligned} & \|\Delta \ln (v)\|=0.68 \\ & \|\Delta t\|=8 \times 10^{-3} s \\ & \|n\|=\frac{1}{c R}=\frac{068}{8 \times 10^{-3}} \\ & 85=\frac{1}{C\left(10^{6}\right)} \\ & C^{-1}=8 \times 10^{7} \\ & C=1.176 \times 10^{-8} \\ & \end{aligned}$ Via the equalion $C=\frac{\varepsilon A}{d}, \quad$ dodu of the peper) and A (K\&fos (Area of in Pban alumenuem plates) to give $\frac{c d}{A}=8$ To moosure d take 50 o I poper used ord stack them otop of using a mexomeder serew gauge a a vo vo caliper, mosyue this distonee Cersuring crumple the popo) and dive. ande by 50 d value. wielth and beght bo. oth use a vernor ealiper). Taking on ave an o height and wridth, multity tase ugeth the A value: Then $E=\frac{c e d}{A}$ gives the This above is a typical Level 3 answer. Correct calculation and a description that has all the right ingredients. Notice how the appropriate measuring instruments are being used and how the uncertainty in the measurements is reduced.
		Total	6	
2	i	The charges repel each other (because they have like charges). Each charge is in equilibrium under the action of the three forces: downward weight, a horizontal electrical force and an upwardly inclined force due to the tension in the string.	B1 B1	
	ii	$F=\frac{\left(4.0 \times 10^{-9}\right)^{2}}{4 \pi \varepsilon_{0} \times 0.02^{2}}=3.596 \ldots \times 10^{-4}(\mathrm{~N})$ weight $W=6.0 \times 10^{-5} \times 9.81=5.886 \times 10^{-4}$ (N)	C1 C1	Correct use of $F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}$

6.2 Electrical Fields

				- Do the experiment quickly to avoid leakage of charge Examiner's Comments This was the second level of response (LoR) question in this paper. This too was designed to assess practical skills of planning, implementation, analysis and evaluation. The context of the question was force experienced by a charged gold foil in the uniform electric field provided by two parallel plates. Candidates were not expected to have seen such an experiment, but they were expected to use their knowledge of electric field strength and practical skills to present plausible approaches. On occasions, the experimental methods showed poor appreciation of some basic ideas. Some candidates were charging the foil using large current that allegedly would cause heating issues for the foil, while others decided to use $Q=I t$, ammeter and a stopwatch to determine the charge on the foil failing to appreciate that the time constant will be too small for such a technique. However, on this occasion, such over ambitious techniques were generally overlooked by examiners. As with 16d, a holistic approach to marking was used, with marks given according answers matching the descriptors for the various levels. There is no one perfect answer for this question, examiners were expecting an eclectic approach. The key things examiners were looking for were: - Methods for determining electric field strength E. - Using the right instruments for the measurements. - Plotting the correct graph to show the relationship given in the question was valid. - Correctly identifying the variables that were being controlled (kept constant). Access to higher level marks dependent on fully answering the question - and this included the last statement about control of variables. A significant number of candidates focused on the description and analysis of the data, without ever addressing the last sentence of the question. This question did discriminate well, with L1, L2 and L3 marks roughly distributed in the ratio 1:3:4.
		Total	6	
$\begin{aligned} & 3 \\ & 5 \end{aligned}$	i	acceptable pattern with lines touching but not entering spheres lines perpendicular to spheres and arrows from plus ion to minus ion	B1 B1	adequate drawing for 1 mark award second mark for detail/quality
	ii	$\begin{aligned} & E=k Q / r^{2} \text { where } k=1 / 4 п \varepsilon_{0} \\ & E=9 \times 10^{9} \times 1.6 \times 10^{-19} / 6.25 \times 10^{-20} \\ & E=2.3 \times 10^{10} \end{aligned}$	C1 C1 C1	correct formula with $\mathrm{Q}=\mathrm{e}$ correct substitution evaluation

6.2 Electrical Fields

		ir	$2 \mathrm{E}=4.6 \times 10^{10}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$	A1	fields of charges add, allow ecf for E
			Total	6	
	a	i	$(\text { force }=) \frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \epsilon_{0} \times\left(1.0 \times 10^{-15}\right)^{2}}$ $(F=) 230(\mathrm{~N})$ $F^{2}=230^{2}+230^{2}-2 \times 230 \times 230 \times \cos 120^{\circ}$ or $\begin{aligned} & F=2 \times 230 \cos 30^{\circ} \\ & F=400(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { C1 } \end{aligned}$	Special case: $F=\frac{Q q}{4 \pi \epsilon_{0} r^{2}}=\frac{2 \times 1.6 \times 10^{-19}}{4 \pi \epsilon_{0} \times\left(1.0 \times 10^{-15}\right)^{2}}$ loses this C1 mark, then ECF for the rest of the marks Not the first two C1 marks for incorrect charge, then allow ECF for the final C1A1 marks Note force to 4 SF is 230.2 N Allow sine rule / scale drawing Allow this mark for $230 \cos 30^{\circ}$ or $200(\mathrm{~N})$ Allow $\pm 10(\mathrm{~N})$ if scale drawing used
		ii	F/ arrow vertical up the page	B1	Allow correct arrow direction anywhere on the figure
			Strong (nuclear) force (acts on the protons) The strong (nuclear) force is attractive	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Ignore gravitational force Allow pulls / holds (the protons) / binds (the protons) for 'attractive'
	b		$\begin{aligned} & 12000=\frac{Q}{4 \pi \varepsilon_{0} r} \\ & 12000=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19} \\ & Q=2.5(4) \times 10^{-7} \text { (C) } \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow $E=(V / d=) 6.316 \times 10^{4}$ and $E=6.316 \times 10^{4}=\frac{Q}{4 \pi \varepsilon_{0} \times 0.19^{2}}$
		ii	$\begin{aligned} & t=78 \times 3600 \\ & \left(I=\frac{2.5 \times 10^{-7}}{7 \times 3000}\right. \\ & I=8.9 \times 10^{-13}(\mathrm{~A}) \\ & \left(R=\frac{6000}{9.0 \times 10^{-13}} \text { or } 6.7 \times 10^{15}(\Omega) \text { or } V=I R\right. \\ & \text { and } R=\frac{\mu}{A} \end{aligned}$ 2 $\begin{aligned} & \frac{6000}{9.0 \times 10^{-13}}=\frac{\rho \times 0.38}{1.1 \times 10^{-4}} \\ & \rho=1.9 \times 10^{12}(\Omega \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \\ & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	There is no ECF from (b)(i) Note 2.54×10^{-7} gives an answer $9.0 \times 10^{-13} \mathrm{~A}$ There is no ECF from (b)(ii)1 Take 12000 V as TE for this C1 mark, then ECF Note $8.9 \times 10^{-13}(\mathrm{~A})$ gives an answer $2.0 \times 10^{12}(\Omega \mathrm{~m})$
			Total	14	
		i	Proton is repelled (by nucleus) (High-speed) proton can get close to (oxygen) nucleus	B1 B1	Allow 'proton can experience the strong (nuclear) force' Not 'collide / hit nucleus'
		ii	$\begin{aligned} & E=[0.25-(2.24-2.20)] \times 10^{-11}(\mathrm{~J}) \text { or } 0.21 \times \\ & 10^{-11}(\mathrm{~J}) \end{aligned}$	C1	

6.2 Electrical Fields

		$\begin{aligned} & \lambda=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{0.21 \times 10^{-11}} \quad \begin{array}{l} \text { (Any } \\ \text { subject) } \end{array} \\ & \lambda=9.5 \times 10^{-14}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow 2 marks for $6.9 \times 10^{-14} ; E=0.29 \times 10^{-11}$ used Allow 1 mark for a value correctly calculated based on any other incorrect value for E (e.g. 8(.0) $\times 10^{-14}$ for $E=0.25 \times$ 10^{-11} and $5(.0) \times 10^{-13}$ for $\left.E=0.04 \times 10^{-11}\right)$
	ii	Used in PET (scans) Any one from: Used to diagnose function of organ / brain / body Detection of cancer / tumour Non-invasive / no surgery / no infection 3D (image)	M1 A1	Enter text here.
		Total	7	
3 8	i	22.1 ± 0.9	B1	value plus uncertainty both required for the mark allow ± 1.0
	ii	two points plotted correctly, including error bars; line of best fit worst acceptable straight line.	B1	ecf value and error bar of first point
			B1	allow ecf from points plotted incorrectly steepest or shallowest possible line that passes through all the error bars; should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar
	ii	gradient $(=4 d / E)=2.4 \pm 0.4 ;$$E=4 \times 2.0 \times 10^{-2} / 2.4 \times 10^{-6}=3.3 \times 10^{4}$	B1	allow 2.4 ± 0.5
	ii		B1	
	ii	$(3.3) \pm 0.6 \times 10^{4}$	B1	$0.1 / 4+0.4 / 2.4=0.192 \times 3.3=0.63$
	ii	$\mathrm{V} \mathrm{~m}^{-1} \text { or } \mathrm{NC}^{-1}$	B1	$0.1 / 4+0.5 / 2.4=0.233 \times 3.3=0.77$ allow $3.3 \pm 0.8 \times 10^{4}$
		Total	7	

